β‐glucuronidase of family‐2 glycosyl hydrolase: A missing member in plants
نویسندگان
چکیده
Glycosyl hydrolases hydrolyze the glycosidic bond in carbohydrates or between a carbohydrate and a non-carbohydrate moiety. beta-glucuronidase (GUS) is classified under two glycosyl hydrolase families (2 and 79) and the family-2 beta-glucuronidase is reported in a wide range of organisms, but not in plants. The family-79 endo-beta-glucuronidase (heparanase) is reported in microorganisms, vertebrates and plants. The E. coli family-2 beta-glucuronidase (uidA) had been successfully devised as a reporter gene in plant transformation on the basis that plants do not have homologous GUS activity. On the contrary, histochemical staining with X-Gluc was reported in wild type (non-transgenic) plants. Data shows that, family-2 beta-glucuronidase homologous sequence is not found in plants. Further, beta-glucuronidases of family-2 and 79 lack appreciable sequence similarity. However, the catalytic site residues, glutamic acid and tyrosine of the family-2 beta-glucuronidase are found to be conserved in family-79 beta-glucuronidase of plants. This led to propose that the GUS staining reported in wild type plants is largely because of the broad substrate specificity of family-79 beta-glucuronidase on X-Gluc and not due to the family-2 beta-glucuronidase, as the latter has been found to be missing in plants.
منابع مشابه
Functional insight for β-glucuronidase in Escherichia coli and Staphylococcus sp. RLH1
Glycosyl hydrolases hydrolyze the glycosidic bond either in carbohydrates or between carbohydrate and non-carbohydrate moiety. The beta-glucuronidase (beta D-glucuronoside glucuronosohydrolase; EC 3.2.1.31) enzyme belongs to the family-2 glycosyl hydrolase. The E. coli borne beta-glucuronidase gene (uidA) was devised as a gene fusion marker in plant genetic transformation experiments. Recent pl...
متن کاملHigh Constitutive Overexpression of Glycosyl Hydrolase Family 17 Delays Floral Transition by Enhancing FLC Expression in Transgenic Arabidopsis
Vitis vinifera glycosyl hydrolase family 17 (VvGHF17) is a grape apoplasmic β-1,3-glucanase, which belongs to glycosyl hydrolase family 17 in grapevines. β-1,3-glucanase is not only involved in plant defense response but also has various physiological functions in plants. Although VvGHF17 expression is negatively related to the length of inflorescence in grapevines, the physiological functions ...
متن کاملIsolation and characterization of a novel endo-β-1,4-glucanase from a metagenomic library of the black-goat rumen
The various types of lignocellulosic biomass found in plants comprise the most abundant renewable bioresources on Earth. In this study, the ruminal microbial ecosystem of black goats was explored because of their strong ability to digest lignocellulosic forage. A metagenomic fosmid library containing 115,200 clones was prepared from the black-goat rumen and screened for a novel cellulolytic enz...
متن کاملStructural determinants allowing transferase activity in SENSITIVE TO FREEZING 2, classified as a family I glycosyl hydrolase.
SENSITIVE TO FREEZING 2 (SFR2) is classified as a family I glycosyl hydrolase but has recently been shown to have galactosyltransferase activity in Arabidopsis thaliana. Natural occurrences of apparent glycosyl hydrolases acting as transferases are interesting from a biocatalysis standpoint, and knowledge about the interconversion can assist in engineering SFR2 in crop plants to resist freezing...
متن کاملConsolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups.
In this work glycosyl hydrolase (GH) family 30 (GH30) is analyzed and shown to consist of its currently classified member sequences as well as several homologous sequence groups currently assigned within family GH5. A large scale amino acid sequence alignment and a phylogenetic tree were generated and GH30 groups and subgroups were designated. A partial rearrangement in the GH30 defining side-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformation
دوره 3 شماره
صفحات -
تاریخ انتشار 2008